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Abstract. In this paper, we study the Hubbard model with intersite Coulomb interaction in the ionic limit
(i.e. no kinetic energy). It is shown that this model is isomorphic to the spin-1 Ising model in presence
of a crystal field and an external magnetic field. We show that for such models it is possible to find,
for any dimension, a finite complete set of eigenoperators and eigenvalues of the Hamiltonian. Then, the
hierarchy of the equations of motion closes and analytical expressions for the relevant Green’s functions
and correlation functions can be obtained. These expressions are formal because these functions depend on
a finite set of unknown parameters, and only a set of exact relations among the correlation functions can
be derived. In the one-dimensional case we show that by means of algebraic constraints it is possible to
obtain extra equations which close the set and allow us to obtain a complete exact solution of the model.
The behavior of the relevant physical properties for the 1D system is reported.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

In a recent paper [1] we have shown that there is a large
class of fermionic systems for which it is possible to find
a complete set of eigenoperators and eigenvalues of the
Hamiltonian. Then, the hierarchy of the equations of mo-
tion closes and analytical expressions for the Green’s func-
tions (GF) can be obtained.

In this article, we apply this formulation to the
extended Hubbard model, where a nearest-neighbor
Coulomb interaction term is added to the original Hamil-
tonian. This model is one of the simplest models capable
to describe charge ordering in interacting electron sys-
tems, experimentally observed in a variety of systems.
We will study the model in the ionic limit, where the ki-
netic energy is neglected with respect to the local and
intersite Coulomb interactions. Among the many analyt-
ical methods used to study the extended Hubbard model
we recall: Hartree-Fock approximation [2], perturbation
theory [3], dynamical mean field theory [4], slave boson
approach [5,6], coherent potential approximation [7]. Nu-
merical studies by means of Quantum Monte Carlo [8],
Lanczos technique [9] and exact diagonalization [10] have
also to be recalled.

As it will be shown in Section 2, the extended Hub-
bard model in the ionic limit is isomorphic to the spin-1
Ising model in presence of a crystal field ∆ and an ex-
ternal magnetic field h. The latter model is known as the
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Blume-Capel (BC) model [11–14]. With the addition of
a biquadratic interaction K it is known as the Blume-
Emery-Griffiths (BEG) model [15] and has been largely
applied to the study of fluid mixtures and critical phe-
nomena. The model is also related to the three-component
model [16]. Some exact results for the BC and BEG models
are known. In one dimension and zero magnetic field, the
spin-1 Ising model and the BEG model have been solved
exactly by means of the transfer matrix method [17,18],
and by means of the Bethe method [19]. Exact solutions
have also been obtained for a Bethe lattice [20] and for the
two-dimensional honeycomb lattice [21]. The most com-
mon approach to the BC and BEG models is based on the
use of mean field approximation [15,16,22–27]. However,
renormalization group studies [28–34] show some qualita-
tive differences from the mean field results. Among other
techniques, we mention temperature expansions [35–37],
cluster-variation method [38] and numerical simulations
[39–42]. The self-consistent Ornstein-Zernike approxima-
tion has been used to study the phase diagram of the 3D
Blume-Capel model for spin 1 [43] and spin 3/2 [44]. A
generalization of the BEG model by introducing a non-
symmetric exchange interaction L was introduced in ref-
erence [23]. The one-dimensional case for this model was
studied in reference [45], where exact renormalization-
group recursion relations were derived, exhibiting tricrit-
ical and critical fixed points. Also, it should be men-
tioned that the general spin-1 model can be mapped
onto the spin-1/2 Ising model, under certain constrained
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conditions, which determine the corresponding subspaces
of interaction parameters (J, L,K, h,∆) [46]. The Ising
model with spin 1/2, 1 and with general spin has been
also studied by means of the Green’s function formal-
ism [47–56]. These studies do not lead to a complete solu-
tion, but to a series of exact relations among the spin cor-
relation functions. These correlation identities have been
used as basis for high temperature expansions [54,57],
and in combination with the effective-field approxima-
tion [58,59].

The outline of the paper is as follows. In Section 2,
we introduce the model for a d-dimensional cubic lattice.
In Section 3, we show that it is possible to find a closed
set of composite operators, which are eigenoperators of the
Hamiltonian and close the algebra. Then, as shown in Sec-
tion 4, analytical expressions of the retarded Green’s func-
tion (GF) and correlation function (CF) can be obtained.
These expressions are only formal. As the composite op-
erators do not satisfy a canonical algebra, the GF and
CF depend on a set of internal parameters, not calcula-
ble through the dynamics, and only exact relations among
the correlation functions are obtained. In the framework
of the Green’s functions formalism, extra equations must
be found by fixing the representation. According to the
scheme of the composite operator method [60–62] (COM),
we fix the representation by means of the algebra (alge-
bra constraints). By following this scheme, in Section 5
we are able to derive for the one-dimensional case extra
equations which close the set of relations and allow us
to obtain an exact solution of the 1D extended Hubbard
model in the ionic limit. This solution is also a solution
of the 1D spin-1 Ising model in presence of a crystal field
and an external magnetic field. As already mentioned, by
using the GF formalism [47–56], other authors have de-
rived a set of exact equations for the correlation functions
of the Ising model. All of them did not succeed to find the
extra equations necessary to close the set. There is one
exception: in reference [53] the set of equations for the 1D
spin-1/2 Ising model for an infinite chain is closed by using
ergodicity conditions for the correlation functions. How-
ever, it should be remarked that ergodicity breaks down
for finite systems and at the critical points. In Section 6,
we present some results for the particle density, specific
heat and compressibility, both in the case of attractive
and repulsive intersite Coulomb interaction. Details of the
calculations are given in the Appendices.

We would like to comment that the extended Hub-
bard model, although in the limit of localized electrons,
is of physical interest. The results reported in Section 6
show some relevant features: (a) the behaviors of the par-
ticle density and of the double occupancy show the oc-
currence, at T = 0, of phase transitions towards charge
ordered states (in particular, for V > 0, a checkerboard
order establishes in the region 0 < µ < 4V ); (b) the spe-
cific heat presents a double peak structure; (c) a crossing
point in the specific heat curves can be observed (it is
remarkable to note that this crossing is observed only in
the region where the checkerboard order is present and
the compressibility vanishes); (d) in the low T region, the

thermal compressibility exhibits a double peak structure,
with peaks localized at µ = 0 and µ = 4V . All the above
mentioned results are characteristic of the Hubbard inter-
actions and are somehow independent of the mobility of
the electrons. Indeed, very similar results have been ob-
tained for the complete Hubbard model (i.e., with finite
hopping) by making use of approximations.

2 The model

A simple generalization of the Hubbard model is obtained
by including an intersite Coulomb interaction. The Hamil-
tonian of this model is given by

H =
∑

ij

[tij − δijµ]c†(i)c(j) + U
∑

i

n↑(i)n↓(i)

+
1
2

∑

i�=j

Vijn(i)n(j) (1)

with the following notation. c(i) and c†(i) are annihilation
and creation operators of electrons in the spinor notation

c(i) =
(
c↑(i)
c↓(i)

)
c†(i) =

(
c†↑(i) c

†
↓(i)

)
(2)

and satisfy canonical anti-commutation relations:

{cσ(i, t), c†σ′(j, t)} = δσσ′δij

{cσ(i, t), cσ′(j, t)} = {c†σ(i, t), c†σ′(j, t)} = 0 (3)

i stays for the lattice vector Ri and i = (i, t). The spinor
notation will be used for all fermionic operators. µ is the
chemical potential. tij denotes the transfer integral and de-
scribes hopping between different sites. nσ(i) = c†σ(i)cσ(i)
is the charge density of electrons at the site i with spin σ.
The strength of the local Coulomb interaction is described
by the parameter U . n(i) is the total charge density oper-
ator

n(i) =
∑

σ

c†σ(i)cσ(i) = c†(i)c(i) (4)

and Vij describes the intersite Coulomb interaction. In
this work, we restrict the analysis to the ionic limit (i.e.,
tij = 0). By considering only first-nearest neighboring
sites, Vij = −2dV αij where d is the dimensionality of the
system and αij is the projection operator. For a cubic lat-
tice of lattice constant a we have

αij =
1
N

∑

k

eik·(Ri−Rj) α(k) =
1
d

d∑

n=1

cos(kna).

(5)
Then, the Hamiltonian (1) takes the form:

H =
∑

i

[−µn(i) + UD(i) + dV n(i)nα(i)] (6)
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where we introduced the double occupancy operator

D(i) = n↑(i)n↓(i) =
1
2
n(i)[n(i) − 1]. (7)

Hereafter, for a generic operator Φ(i) we use the following
notation

Φα(i, t) =
∑

j

αijΦ(j, t). (8)

Let us consider the transformation

n(i) = 1 + S(i). (9)

It is clear that

n(i) = 0
n(i) = 1
n(i) = 2

⇔
⇔
⇔

S(i) = −1
S(i) = 0
S(i) = 1.

(10)

Under the transformation (9) the Hamiltonian (6) can be
cast in the form

H = −dJ
∑

i

S(i)Sα(i) +∆
∑

i

S2(i) − h
∑

i

S(i) + E0

(11)
where we defined

E0 = (−µ+ dV )N J = −dV
h = µ− 2dV − 1

2
U ∆ =

1
2
U. (12)

Hamiltonian (11) is just the spin-1 Ising model with first-
nearest neighbor interactions in presence of a crystal field
∆ and an external magnetic field h. We have the equiva-
lence

HIsing = H − E0. (13)

The relation between the partition functions is

ZH = e−βE0ZIsing (14)

then, the thermal average of any operator A assumes the
same value in both models

〈A〉H = 〈A〉Ising . (15)

According to this we can choose to study either one or the
other model and obtain both solutions at once. We decided
to put attention to the model Hamiltonian (6). However,
all the results can be easily extended to the Ising model
by means of the property (15) and of the transformation
rules (9) and (12). In closing this Section, we note that
the particle-hole symmetry enjoyed by the Hubbard model
corresponds to the symmetry of the Ising model under
simultaneous inversion of spin and magnetic field.

3 Composite fields and equations of motion

It is immediate to see that the density operator nσ(i) does
not depend on time

i
∂

∂t
nσ(i) = [nσ(i), H ] = 0 (16)

and the standard methods based on the equations of mo-
tion are not applicable in terms of this operator. In order
to use the Green’s function formalism, let us introduce the
composite field operators

ψ(ξ)
p (i) = ξ(i)[nα(i)]p−1 ψ(η)

p (i) = η(i)[nα(i)]p−1

(17)
where ξ(i) = [1−n(i)]c(i) and η(i) = n(i)c(i) are Hubbard
operators in the spinor notation [see (2)]. The field oper-
ators ψ(ξ)

p (i) and ψ(η)
p (i) satisfy the equations of motion

i
∂

∂t
ψ(ξ)

p (i) = −µψ(ξ)
p (i) + 2dV ψ(ξ)

p+1(i)

i
∂

∂t
ψ(η)

p (i) = −(µ− U)ψ(η)
p (i) + 2dV ψ(η)

p+1(i). (18)

Apparently, the equations of motion do not constitute a
closed set. By taking higher-order time derivatives we gen-
erate a hierarchy of composite operators. However, on the
basis of the anticommutation relations (3) the following
fundamental properties of the field [nα(i)]p can be estab-
lished

[nα(i)]p =
4d∑

m=1

A(p)
m [nα(i)]m (19)

where the coefficients A(p)
m are rational numbers which sat-

isfy the relation
4d∑

m=1

A(p)
m = 1. (20)

The recurrence relation (19) is proved in Appendix A. We
now define the composite operators ψ(ξ)(i) and ψ(η)(i),
multiplet operators of rank 4d+ 1

ψ(ξ)(i) =





ψ
(ξ)
1 (i)

ψ
(ξ)
2 (i)
...

ψ
(ξ)
4d+1




=





ξ(i)
ξ(i)[nα(i)]

...
ξ(i)[nα(i)]4d



 (21)

ψ(η)(i) =





ψ
(η)
1 (i)

ψ
(η)
2 (i)

...
ψ

(η)
4d+1(i)




=





η(i)
η(i)[nα(i)]

...
η(i)[nα(i)]4d



 . (22)

By means of (18) and of the recurrence formula (19), these
fields are eigenoperators of the Hamiltonian (6)

i ∂
∂tψ

(ξ)(i) = [ψ(ξ)(i), H ] = ε(ξ)ψ(ξ)(i)
i ∂
∂tψ

(η)(i) = [ψ(η)(i), H ] = ε(η)ψ(η)(i)
(23)

where ε(ξ) and ε(η) are the energy matrices, of rank (4d+
1) × (4d + 1), which can be calculated by means of the
equations of motion (18) and the recurrence rule (19). The
explicit expressions of the energy matrices are given in
Appendix B. The eigenvalues E(ξ)

n and E(η)
n of the energy
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matrices are given by

E
(ξ)
n = −µ+ (n− 1)V

E
(η)
n = −µ+ U + (n− 1)V

{n = 1, 2 · · · · · · (4d+ 1)}.
(24)

The Hamiltonian (6) has been solved since we have ob-
tained a closed set of eigenoperators and eigenvalues.
Then, we can proceed to the calculation of observable
quantities. This will be done in the next sections by us-
ing the formalism of Green’s functions (GF). It is worth
noticing that although at the level of equations of motion
the two fields ψ(ξ)(i) and ψ(η)(i) are decoupled, they are
indeed coupled by means of the self-consistent equations
necessary to determine the correlators appearing in the
normalization matrix [see Sect. 4].

4 Retarded and correlation functions

Let us consider the retarded Green’s function

G(ab)(i, j) =
〈
R[ψ(a)(i)ψ(b)†(j)]

〉

= θ(ti − tj)
〈
{ψ(a)(i), ψ(b)†(j)}

〉
(25)

where 〈· · · 〉 denotes the quantum-statistical average over
the grand canonical ensemble and a, b = ξ, η. It can be
shown that G(ab)(i, j) = δabδijG

(a)(ti−tj). By introducing
the Fourier transform

G(a)(ti − tj) =
i

(2π)

+∞∫

−∞
dωe−iω(ti−tj)G(a)(ω) (26)

and by means of the field equations (23), the retarded GF
satisfies the equation

[ω − ε(a)]G(a)(ω) = I(a) (27)

where I(a) is the normalization matrix, defined as

I(a) =
〈
{ψ(a)(i), ψ(a)†(i)}

〉
. (28)

Calculations of the anticommutator for a paramagnetic
phase and use of the recursion rule (19) show that the
normalization matrix has the following expression

I(a) =





I
(a)
1,1 I

(a)
1,2 · · · I

(a)
1,4d I

(a)
1,4d+1

I
(a)
1,2 I

(a)
1,3 · · · I

(a)
1,4d+1 I

(a)
2,4d+1

...
...

...
...

...
I
(a)
1,4d I

(a)
1,4d+1 · · · I(a)

4d−1,4d+1 I
(a)
4d,4d+1

I
(a)
1,4d+1 I

(a)
2,4d+1 · · · I

(a)
4d,4d+1 I

(a)
4d+1,4d+1





(29)
where

I
(a)
p,4d+1 =

4d∑

m=1

A(4d+1)
m I

(a)
p−1,m+1 (p = 2, 3, · · · , 4d+ 1)

(30)

We see that we need to calculate only the 4d+1 elements
I
(a)
1,p (p = 1, 2, · · · , 4d + 1). These elements have the fol-

lowing expressions

I
(ξ)
1,p = κ(p−1) − λ(p−1)

I
(η)
1,p (k) = λ(p−1) (31)

with the definitions

κ(p) = 〈[nα(i)]p〉
λ(p) =

1
2
〈n(i)[nα(i)]p〉 . (32)

The solution of equation (27) is

G(a)(ω) =
4d+1∑

n=1

σ(a,n)

ω − E
(a)
n +iδ

(33)

where the spectral functions σ
(a,n)
µν are calculated by

means of the formula [60]

σ
(a,n)
µν = Ω

(a)
µn
∑
δ

[Ω(a)
nδ ]−1I

(a)
δν (34)

where Ω(a) is the (4d+1)×(4d+1) matrix whose columns
are the eigenvectors of the matrix ε(a). Calculations of the
matrices Ω(ξ) and Ω(η) are reported in Appendix B. It is
worth noting that we have Ω(ξ) = Ω(η).

The spectral density matrices σ(a,n)
µν are calculated in

Appendix C. They satisfy the sum rule

4d+1∑

n=1

σ(a,n)
µν = I(a)

µν . (35)

This is a particular case of the general sum rule

4d+1∑

n=1

[E(a)
n ]pσ(a,n) = M (a,p) (36)

where M (a,p) are the spectral moments defined as

M (a,p) =
〈
{(i∂/∂t)p ψ(a)(i), ψ(a)†(i)}

〉
. (37)

The fact that the sum rule (36) is satisfied at all orders in
p, is a consequence of the theorem proved in reference [63]
(see also p. 572 in Ref. [62]). The correlation functions
can be immediately calculate from (33) by means of the
spectral theorem and are given by

C(a)(ti − tj) =
〈
ψ(a)(i, ti)ψ(a)†(i, tj)

〉

=
1

(2π)

+∞∫

−∞
dωe−iω(ti−tj)C(a)(ω) (38)

with

C(a)(ω) = 2π
4d+1∑
n=1

σ(a,n)

1+e−βω δ[ω − E
(a)
n ]. (39)
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Equations (33) and (39) are an exact solution of the model
Hamiltonian (6). One is able to obtain an exact solution
as the composite operators ψ(ξ)

p (i) and ψ
(η)
p (i) constitute

a closed set of eigenoperators of the Hamiltonian. How-
ever, as stressed in reference [60], the knowledge of the
GF is not fully achieved yet. The algebra of the fields
ψ(ξ)(i) and ψ(η)(i) is not canonical: as a consequence,
the normalization matrix I(a) in the equation (27) con-
tains some unknown static correlation functions, correla-
tors, [see Eqs. (31, 32)], that have to be self-consistently
calculated. According to the scheme of calculations pro-
posed by the composite operator method [60–62], one way
of calculating the unknown correlators is by specifying the
representation where the GF are realized. The knowledge
of the Hamiltonian and of the operatorial algebra is not
sufficient to completely determine the GF. The GF refer
to a specific representation (i.e., to a specific choice of
the Hilbert space) and this information must be supplied
to the equations of motion that alone are not sufficient
to completely determine the GF. The procedure is the
following. We set up some requirements on the represen-
tation and determine the correlators in order that these
conditions be satisfied. From the algebra it is possible to
derive several relations among the operators. We will call
algebra constraints (AC) all possible relations among the
operators dictated by the algebra. This set of relations
valid at microscopic level must be satisfied also at macro-
scopic level, when expectations values are considered. Use
of these considerations leads to some self-consistent equa-
tions which will be used to fix the unknown correlator
appearing in the normalization matrix. An immediate set
of rules is given by the equation

〈
ψ(a)(i)ψ(a)†(i)

〉
=

1
(2π)

+∞∫

−∞
dωC(a)(ω) (40)

where the l.h.s. is fixed by the AC and the boundary condi-
tions compatible with the phase under investigation, while
in the r.h.s. the correlation function C(a)(ω) is computed
by means of the equations of motion [cf. Eq. (39)].

Another important set of AC can be derived [1,64]
by observing that there exist some operators, O, which
project out of the Hamiltonian a reduced part

OH = OH0. (41)

WhenH0 andHI = H−H0 commute, the quantum statis-
tical average of the operator O over the complete Hamil-
tonian H must coincide with the average over the reduced
Hamiltonian H0

Tr{Oe−βH} = Tr{Oe−βH0}. (42)

Another important relation is the requirement of time
translational invariance which leads to the condition that
the spectral moments, defined by equation (37), must sat-
isfy the following relation

M (ab,p)
nm (k) = [M (ab,p)

mn (k)]∗ (43)

It can be shown that if (43) is violated, then states with a
negative norm appear in the Hilbert space. Of course the
above rules are not exhaustive and more conditions might
be needed.

According to the calculations given in Appendix C, the
GF and the correlation functions depend on the following
parameters: external parameters (µ, T, V, U), internal pa-
rameters κ(1), κ(2), · · · , κ(4d) and λ(1), λ(2), · · · , λ(4d). By
means of the algebraic relations

ξ↑ξ
†
↑ + η↑η

†
↑ = 1 − n↑

ξ↓ξ
†
↓ + η↓η

†
↓ = 1 − n↓ (44)

and by making use of the AC (40), we obtain the following
4d+ 1 self-consistent equations

C
(ξ)
1,k + C

(η)
1,k = κ(k−1) − λ(k−1) (k = 1, 2, · · ·4d+ 1)

(45)
where, recalling (38) and (39)

C
(a)
1,k =

〈
ψ(a)(i)ψ(a)†(i)

〉
=

1
2

4d+1∑

n=1

T (a)
n σ

(a,n)
1,k

T (a)
n = 1 + tanh

(
E

(a)
n

2kBT

)
. (46)

To determine the 8d parameters we need other 4d − 1
equations. In order to obtain a complete solution of the
model, we must calculate these parameters. This will be
done in the next section for the one-dimensional case.

It is worth mentioning that the formulation given in
this Section can be easily extended to multipoint correla-
tion functions, as 〈n(i)[nα(i)]pn(l1)n(l2) · · ·n(ls)〉. Let us
define the retarded Green’s function

G(a,Φ)(t− t′) =
〈
R[ψ(a)(i, t)ψ(a)†(i, t′)Φ]

〉
(47)

where Φ = Φ{n(j)} is any function of the n(j) with j �= i.
All the equations derived above remain valid by means of
the substitutions

I(a) −→ I(a,Φ) =
〈
{ψ(a)(i), ψ(a)†(i)}Φ

〉

κ(p) −→ κ(p,Φ) = 〈[nα(i)]pΦ〉
λ(p) −→ λ(p,Φ) =

1
2
〈n(i)[nα(i)]pΦ〉 . (48)

For each choice of the function Φ{n(j)}, it is necessary to
determine the new set of parameters κ(p,Φ) and λ(p,Φ). For
example see reference [64], where the correlation function
〈n(i)[nα(i)]pn(j)〉 has been calculated for the 1D spin-1/2
Ising model.

5 Self-consistent equations
for one-dimensional systems

Until now the analysis has been carried on in complete
generality for a cubic lattice of d dimensions. We now
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consider one-dimensional systems, and in particular we
will study an infinite chain in the homogeneous phase.
As shown in previous section, the set of self-consistent
equations (45) are not sufficient to determine all the 8
internal parameters. The remaining three equations can
be derived by algebraic considerations on the basis of the
requirement (42). We start from the algebraic relations

ξ†(i)n(i) = 0

ξ†(i)D(i) = 0 (49)

which imply that

ξ†(i)H = ξ†(i)H0 (50)

where
H0 = H − 2V n(i)nα(i). (51)

By means of the fact that H0 commutes with
HI = H −H0, the relation (50) leads to

ξ†(i)e−βH = ξ†(i)e−βH0 . (52)

Then, by means of the requirement (42), the correlation
function C(ξ)

1k =
〈
ξ(i)ξ†(i)[nα(i)]k−1

〉
can be expressed as

C
(ξ)
1k

C
(ξ)
11

=
C

(ξ,0)
1k

C
(ξ,0)
11

(53)

where
C

(ξ,0)
1k =

〈
ξ(i)ξ†(i)[nα(i)]k−1

〉
0

(54)

and 〈· · · 〉0 denotes the thermal average with respect to
H0. In order to calculate C(ξ,0)

1k , let us define the retarded
GF

G
(ξ,0)
1k (t− t′) =

〈
R[ξ(i, t)ξ(i, t′)][nα(i)]k−1

〉
0

G
(η,0)
1k (t− t′) =

〈
R[η(i, t)η(i, t′)][nα(i)]k−1

〉
0
. (55)

By means of the equations of motion

[ξ(i), H0] = −µξ(i)
[η(i), H0] = −(µ− U)η(i) (56)

we have for an homogeneous phase

G
(ξ,0)
1k (ω) =

2
〈
[nα(i)]k−1

〉
0
− 〈n(i)[nα(i)]k−1

〉
0

2(ω + µ+iδ)
(57)

G
(η,0)
1k (ω) =

〈
n(i)[nα(i)]k−1

〉
0

2(ω + µ− U+iδ)
. (58)

Recalling the relation between retarded and correlation
functions we have

C
(ξ,0)
1k =

2
〈
[nα(i)]k−1

〉
0
− 〈n(i)[nα(i)]k−1

〉
0

2(1 + eβµ)
(59)

C
(η,0)
1k =

〈
n(i)[nα(i)]k−1

〉
0

2(1 + eβ(µ−U))
. (60)

Recalling the algebraic relations

ξσξ
†
σ + ηση

†
σ = 1 − nσ

ηση
†
σ = nσ − n↑n↓ (61)

we obtain from (59) and (60)
〈
n(i)[nα(i)]k−1

〉
0 = B1

〈
[nα(i)]k−1

〉
0〈

D(i)[nα(i)]k−1
〉

0 = B2

〈
[nα(i)]k−1

〉
0

(62)

where

B1 = 〈n(i)〉0 =
2eβµ(1 + eβµe−βU )

(1 + 2eβµ + e2βµe−βU )
(63)

B2 = 〈D(i)〉0 =
eβ(2µ−U)

(1 + 2eβµ + e2βµe−βU)
. (64)

By substituting (62) into (59) and (60)

C
(ξ,0)
1k = (1 −B1 +B2)

〈
[nα(i)]k−1

〉
0

C
(η,0)
1k =

1
2
(B1 − 2B2)

〈
[nα(i)]k−1

〉
0
. (65)

By substituting the first equation of (65) into (53) we
obtain

C
(ξ)
1k = C

(ξ)
11

〈
[nα(i)]k−1

〉
0
. (66)

Now, we observe [65] thatH0 describes a system where the
original lattice is divided in two disconnected sublattices
(the chains to the left and right of the site i). Then, in
H0 representation, the correlation functions which relates
sites belonging to different sublattices can be decoupled:

〈a(j)b(m)〉0 = 〈a(j)〉0 〈b(m)〉0 (67)

for i and j belonging to different sublattices. By using this
property and the algebraic relation (A.4) we have

〈
[nα(i)]2

〉
0

=
1
2
X1 +X2 +

1
2
X2

1

〈
[nα(i)]3

〉
0

=
1
4
X1 +

3
2
X2 +

3
2
X1X2 +

3
4
X2

1

〈
[nα(i)]4

〉
0
=

1
8
X1+

7
4
X2+

9
2
X1X2+

7
8
X2

1 +
3
2
X2

2 (68)

where we defined

X1 = 〈nα(i)〉0
X2 = 〈Dα(i)〉0 . (69)

Then, we obtain the self-consistent equations

C
(ξ)
14 = C

(ξ)
11 [

1
4
X1 +

3
2
X2 +

3
2
X1X2 +

3
4
X2

1 ]

C
(ξ)
15 = C

(ξ)
11 [

1
8
X1+

7
4
X2+

9
2
X1X2+

7
8
X2

1 +
3
2
X2

2 ] (70)

which relate the correlation functions C(ξ)
14 , C(ξ)

15 to C(ξ)
11 ,

C
(ξ)
12 , C(ξ)

13 , when we observe that, by means of (66), the
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two parameters X1 and X2 are expressed in terms of the
correlation functions C(ξ)

11 , C(ξ)
12 , C(ξ)

13 as

X1 =
C

(ξ)
12

C
(ξ)
11

(71)

X2 =
C

(ξ)
13

C
(ξ)
11

− 1
2
C

(ξ)
12

C
(ξ)
11

− 1
2
C

(ξ)
12

2

C
(ξ)
11

2
. (72)

We need another equation. To this purpose, we start from
the algebraic relations

Dp(i) = D(i)
D(i)np(i) = 2pD(i) p ≥ 1. (73)

From here, with some effort, we can derive the following
relations

D(i)e−βH = D(i){1 +
4∑

p=1

(2fp + gp)[nα(i)]p}e−βH0 (74)

Dα(i)e−βH =Dα(i){1+
4∑

p=1

[fpn(i)+gpD(i)][nα(i)]p}e−βH0

(75)
where

f1 = 2A1 − 13
3
A2

1 −
1
2
A2

2 +
8
3
A1A2

f2 =
40
3
A2

1 +
11
6
A2

2 −
28
3
A1A2

f3 = −32
3
A2

1 − 2A2
2 +

28
3
A1A2

f4 =
8
3
A2

1 +
2
3
A2

2 −
8
3
A1A2 (76)

g1 = −4A1 + 2A2 +
26
3
A2

1 −
10
3
A2

2 −
1
2
A2

4

−16
3
A1A2 +

8
3
A2A4

g2 = −80
3
A2

1 +
29
3
A2

2 +
11
6
A2

4 +
56
3
A1A2 − 28

3
A2A4

g3 =
64
3
A2

1 −
20
3
A2

2 − 2A2
4 −

56
3
A1A2 +

28
3
A2A4

g4 = −16
3
A2

1 +
4
3
A2

2 +
2
3
A2

4 +
16
3
A1A2 − 8

3
A2A4 (77)

and
Ap = e−pβV − 1. (78)

By taking the expectation value and by using the relations
(62) and ( 66), we obtain from (74) and (75)

〈D(i)〉 =
B2

(1 −B1 + B2)
{C(ξ)

1,1 +
4∑

p=1

(2fp + gp)C
(ξ)
1,p+1}

(79)

〈Dα(i)〉 =
C

(ξ)
11

(1 −B1 +B2)
[〈Dα(i)〉0

+
4∑

p=1

(B1fp +B2gp) 〈Dα(i)[nα(i)]p〉0]. (80)

The translational invariance requires that 〈Dα(i)〉 =
〈D(i)〉. Then, from (79) and (80) we obtain the equation

B2 +B2

4∑

p=1

(2fp + gp)
C

(ξ)
1,p+1

C
(ξ)
11

= X2 +
4∑

p=1

(B1fp +B2gp)〈Dα(i)[nα(i)]p〉0. (81)

To calculate the correlation functions 〈Dα(i)[nα(i)]p〉0, we
observe the following algebraic relation which can be de-
rived by means of (A.4) and (73)

Dα(i)nα(i) = Dα(i) +
1
6
nα(i) − 1

2
[nα(i)]2 +

1
3
[nα(i)]3

Dα(i)[nα(i)]2 = Dα(i) +
1
6
nα(i) − 1

3
[nα(i)]2

−1
6
[nα(i)]3 +

1
3
[nα(i)]4

Dα(i)[nα(i)]3 = Dα(i) − 1
3
nα(i) +

7
4
[nα(i)]2

−35
12

[nα(i)]3 +
3
2
[nα(i)]4

Dα(i)[nα(i)]4 = Dα(i) − 25
12
nα(i) +

205
24

[nα(i)]2

−265
24

[nα(i)]3 +
55
12

[nα(i)]4. (82)

By taking the expectation value of (82) with respect to
H0 and by using the property (67), we can express the
correlation functions 〈Dα(i)[nα(i)]p〉0 as

〈Dα(i)nα(i)〉0 = X2 +
1
2
X1X2

〈
Dα(i)[nα(i)]2

〉
0

= X2 +
5
4
X1X2 +

1
2
X2

2

〈
Dα(i)[nα(i)]3

〉
0

= X2 +
19
8
X1X2 +

9
4
X2

2

〈
Dα(i)[nα(i)]4

〉
0

= X2 +
65
16
X1X2 +

55
8
X2

2 . (83)

Then, we can we can put equation (81) under the form

b0 + b1X1 + b2X2 + b3X1X2 + b4X
2
1 + b5X

2
2 = 0 (84)
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Fig. 1. The particle density n is plotted as a function of: (a) the chemical potential at various temperatures for V = −1; (b) the
temperature at various values of chemical potential for V = −1.

where

b0 = B2

b1 = r1 − s1 +
1
2
(r2 − s2) +

1
4
(r3 − s3) +

1
8
(r4 − s4)

b2 = −1 + r2 +
3
2
r3 +

7
4
r4 − s1 − 2s2 − 5

2
s3 − 11

4
s4

b3 =
3
2
r3 +

9
2
r4 − 1

2
s1 − 5

4
s2 − 31

8
s3 − 137

16
s4

b4 =
1
2
(r2 − s2) +

3
4
(r3 − s3) +

7
8
(r4 − s4)

b5 =
3
2
r4 − 1

2
s2 − 9

4
s3 − 67

8
s4 (85)

rp = (B1 + 2B2)fp + 2B2gp

sp = B1fp +B2gp. (86)

Recalling [see (71) and (72)] that the parameters X1 and
X2 are expressed in terms of the correlation functions C(ξ)

11 ,
C

(ξ)
12 , C(ξ)

13 , equation (84) gives the needed third equation
Summarizing, we have 8 self-consistent equations (45),

(70) and (84) which will determine the 8 internal parame-
ters κ(1), κ(2), κ(3), κ(4), λ(1), λ(2), λ(3), λ(4) in terms of the
external parameters µ, T, U and V . The set of 5 equations
in (45) is a system of linear equations. This system can be
analytically solved with respect to 5 parameters and we
are left with three parameters, which are determined by
the non-linear equations (70) and (84). Once these param-
eters are known, we can calculate the correlation functions
and all the properties of the system.

6 Results for the one-dimensional case

We now present some results for the case U = 0. This
situation corresponds to the ionic Hubbard model without
local Coulomb interaction, and to the pure spin-1 Ising
model, without the crystal field. In one dimension and
zero magnetic field, the spin-1 Ising model and the BEG

model have been solved exactly by means of the transfer
matrix method (Refs. [17,18,45]). We recall that the case
of zero magnetic field corresponds to the case of half filling
in the Hubbard model. The presence of magnetic field has
been treated in reference [45], only for a ferromagnetic
coupling and studied only in connection to the existence
of critical and tricritical fixed points. The general case of U
different from zero will be considered elsewhere. We study
the behavior of the system: as a function of the parameters
µ and T . We take |V | = 1all energies are measured in units
of |V |.

At first, we consider the case of an attractive inter-
site Coulomb potential (i.e., V < 0). This situations cor-
responds to J positive (i.e., ferromagnetic coupling). In
Figure 1a, we show the particle density n = 〈n(i)〉 = κ(1)

as a function of the chemical potential µ. In terms of the
Ising model, this figure should be read as the magnetiza-
tion 〈S(i)〉 versus the magnetic field h. By increasing µ,
the particle density increases and varies between 0 and 2.
At µ = 2V we have n = 1, in agreement with the particle-
hole symmetry. By decreasing the temperature, at µ = 2V
the system tends to become unstable against a charge or-
dered state (ferromagnetic order in the Ising model): the
particle density jumps from 0 to 2. This is also seen in
Figure 1b, where the particle density is plotted versus the
temperature for various values of the chemical potential.
For µ < 2V we have limT→0 n = 0, while for µ > 2V we
have limT→0 n = 2. At zero temperature there is a phase
transition at µ = 2V from a state with no particle to a
fully occupied state where the charge assumes the maxi-
mum value.

The double occupancy D can be computed by means
of the expression

D =
n

2
− Cηη

11 . (87)

The behavior of D is shown in Figures 2a and 2b, where D
is given as a function of the chemical potential and temper-
ature, respectively. By increasing µ, the double occupancy
increases and varies between 0 and 1. For µ < 2V we have
limT→0D = 0, while for µ > 2V we have limT→0D = 1.
At zero temperature there is a phase transition at µ = 2V



F. Mancini: The extended Hubbard model in the ionic limit 535

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-8 -4 0 4 8

U=0 
V=-1

T=0.5
T=1.0
T=2.0

D

µ

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

U=0 
V=-1

µ=-3.0
µ=-2.5
µ=-2.1
µ=-1.9
µ=-1.5
µ=-1.0

D

T

(b)

Fig. 2. The double occupancy D is plotted as function of: (a) the chemical potential at various temperatures for V = −1;
(b) the temperature at various values of chemical potential for V = −1.
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Fig. 3. The specific heat C is plotted as a function of the
temperature at various values of chemical potential for V =
−1.

from a state where all the sites are empty to a state where
all the sites are doubly occupied. The behavior of the
parameters κ(p) and λ(p) as functions of µ is similar to
that exhibited by n; for T = 0 these parameters at µ = 2V
jump from 0 to their ergodic value.

The specific heat is given by

C =
dE

dT
(88)

where the internal energy E can be calculated by means
of the expression

E = −µn+ UD + 2V λ(1). (89)

The specific heat satisfies the property C(µ) = C(2V −µ).
Therefore, we can limit the analysis to the region 2V <
µ < ∞ (or −∞ < µ < 2V ). As shown in Figure 3,
the specific heat increases by increasing T up to a certain
temperature, then decreases and goes to zero in the limit
T → ∞. Near the transition point µ = 2V , the peak is
sharper and is situated in the low-temperature region. By

0
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4

5
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T=0.5
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T=2.0

µ

dn
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Fig. 4. The derivative of the particle density with respect to
the chemical potential dn/dµ is plotted as a function of the
chemical potential at various temperatures for V = −1.

moving away from µ = 2V , the peak becomes broader and
moves to high temperatures.

The thermal compressibility κT is given by

κT =
1
n2

dn

dµ
. (90)

In Figure 4 dn
dµ is plotted versus the chemical potential for

various values of temperature. A peak is observed at the
transition point µ = 2V . By decreasing T , the height of
the peak increases and the compressibility tends to diverge
in the limit T → 0. As a function of the temperature
(κT )µ=2V exponentially diverges at low temperatures and
decreases as 1

T in the limit of large T . In terms of the Ising
model, Figure 4 should be read as the spin susceptibility
versus the magnetic field.

Next, we consider the case of a repulsive intersite
Coulomb interaction (i.e., V > 0). This case corresponds
to J negative (i.e., antiferromagnetic coupling). In Fig-
ure 5a we show the particle density n as a function of the
chemical potential µ. By increasing µ, the particle density
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Fig. 5. The particle density n is plotted as a function of: (a) the chemical potential at various temperatures for V = 1; (b) the
temperature at various values of the chemical potential for V = 1.
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Fig. 6. The internal parameters (a) κ(2), κ(3), κ(4) and (b) λ(1), λ(2), λ(3), λ(4) are plotted as functions of the chemical potential
at various temperatures for V = 1.

increases from zero, reaches the value 1 at µ = 2V , and
tends to 2 for larger values of the chemical potential. When
the temperature decreases some instabilities of the homo-
geneous phase appear. In the limit T → 0, two singular-
ities manifest: one at µ = 0, where n jumps from 0 to
1, the other at µ = 4V , where n jumps from 1 to 2. In
the region 0 < µ < 4V , n exhibits a plateau centered at
µ = 2V . This behavior is also seen in Figure 5b, where
the particle density n is given as a function of the tem-
perature. At T = 0 we have two phase transitions. At
µ = 0 the system passes from a state with no charge to
a state where the charge is distributed in a checkerboard
structure. At µ = 4V there is a second phase transition
where the system passes from the checkerboard structure
to a state where the charge is uniformly distributed. The
checkerboard structure is clearly seen from the behavior of
the parameters κ(p) and λ(p), as shown in Figures 6. While
the parameters κ(p) have the same behavior as n, with two
singularities at µ = 0 and at µ = 4V , the parameters λ(p)

exhibit only one singularity at µ = 4V . The reason of this
difference is related to the fact that κ(p) are correlation
functions between the site i and second-nearest neighbor-

ing sites, while λ(p) mainly relate the site i to first-nearest
neighboring sites.

The double occupancy as a function of the chemical
potential is shown in Figure 7a; by increasing µ, D in-
creases from zero and tends to 1 for large values of the
chemical potential. At T = 0, as also seen in Figure 7b,
D has a discontinuity at µ = 0, where jumps from zero
to 1/2, and another discontinuity at µ = 4V where jumps
from 1/2 to 1. In the region 0 < µ < 4V D has the con-
stant value of 1/2. Again, this show the transition to a
checkerboard structure of the charge.

To study the specific heat, let us distinguish the two
regions 2V < µ < 4V and µ > 4V . In the first region, see
Figure 8a, the specific heat increases with temperature,
exhibits a peak at a certain temperature T = T1, then
decreases. When µ approaches the critical value µc = 4V ,
see Figure 8b, the specific heat develops a double peak
structure with a broad peak at higher temperature than
T1. The latter temperature decreases with µ and tends to
zero for µ→ µc. It is characteristic of this region the fact
that all the specific curves cross at the same temperature,
independently on the value of µ. The crossing temperature
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Fig. 7. The double occupancy D is plotted as function of: (a) the chemical potential at various temperatures for V = 1; (b) the
temperature at various values of chemical potential for V = 1.
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Fig. 8. The specific heat C is plotted as a function of the temperature at various values of chemical potential for V = 1: (a) in
the region 2V < µ < 4V ; (b) near the transition point µ = 4V ; (c) in the region µ > 4V .

is T ∗ ≈ 1.1. The fact that there is a crossing point in the
specific heat curves versus T , when plotted for different
values of some thermodynamics quantities, has been ob-
served in a large variety of systems [62,66,67]. In the sec-
ond region, see Figure 8c, C exhibits a low-temperature
peak at a certain temperature T = T2. T2 tends to zero
for µ → µc, increases by increasing µ. Again, close to µc

there is a double-peak structure, which disappears when
µ moves away from µc. It is characteristic of this region
that no crossing point is observed. For large value of T , the
two specific heats (i.e. attractive and repulsive V ) tend to
coincide. This is because the system is in a homogeneous
phase, where the thermal energy predominates over the
Coulomb interaction. It is interesting to observe that the
crossing point is observed only for V > 0 and in the region
0 < µ < 4V , where the checkerboard order is observed.

The thermal compressibility κT is studied in Figure 9,
where dn

dµ is given as a function of the chemical potential
for various values of temperature. When T is lowered a
double peak structure develops, with peaks localized at
µ = 0 and µ = 4V . The heights of the peaks increases by
decreasing T and tends to diverge in the limit T → 0. It
is worth noticing that for low temperature the compress-
ibility is very small (zero in the limit T → 0) in the wide
region 0 < µ < 4V , where the phase with checkerboard
order of the charge is observed. Similar results have been
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Fig. 9. The derivative of the particle density with respect to
the chemical potential dn/dµ is plotted as a function of the
chemical potential at various temperatures for V = 1.

obtained in reference [68], where the t−V model has been
studied within a cluster approximation.

7 Conclusions

The Hubbard model with intersite Coulomb interaction
has been studied in the ionic limit (i.e., no kinetic energy).
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This model is isomorphic to the spin-1 Ising model in
presence of a crystal field and an external magnetic field.
A finite complete set of eigenoperators and eigenvalues
of the Hamiltonian has been found for arbitrary dimen-
sions. This knowledge allows us to determine analytical
expressions of the local Green’s functions and the corre-
lation functions. As the eigenoperators do not satisfy a
canonical algebra, the GF and the CF depend on a set
of unknown parameters, not calculable by means of the
dynamics. By using appropriate boundary conditions and
algebraic relations we have determined these parameters
for the case of an infinite homogeneous chain. Some results
for the case U = 0 (i.e., no local Coulomb interaction/no
crystal field) have been given. The system exhibits a dif-
ferent behavior according to the sign of V , the intersite
Coulomb interaction, or the sign of J , the exchange in-
teraction. For V < 0 (J > 0, ferromagnetic coupling) at
µ = 2V (h = 0) the system exhibits a phase transition
to a charge ordered state (ferromagnetic phase for the
Ising model) at zero temperature. For positive V (J < 0,
antiferromagnetic coupling), the system exhibits instabil-
ities at µ = 0 (h = −2 |J |) and at µ = 4V (h = 2 |J |).
In the limit of zero temperature a phase transition to a
state with a checkerboard order of the charge (antiferro-
magnetic phase for the Ising model) is observed at µ = 0.
This order persists up to µ = 4V , where a second transi-
tion to an homogeneous charge order is observed. A cross-
ing point in the specific heat curves is observed only for
V > 0 and in the region 0 < µ < 4V , where the checker-
board order is observed. In the entire region 0 < µ < 4V ,
the compressibility vanishes at low temperatures. Further
study, in particular for the case of finite U , will be pre-
sented elsewhere.

Appendix A: Algebraic relations

Let us start by observing that because of the basic an-
ticommutating rules (3) the number n(i) = c†(i)c(i) and
the double occupancy D(i) = n(i)[n(i) − 1]/2 operators
satisfy for p ≥ 1 the following algebra

np(i) = n(i) + apD(i)
Dp(i) = D(i) ap = 2p − 2

np(i)D(i) = 2pD(i). (A.1)

From this algebra several and important relations can be
derived. Firstly, let us consider the operator

nα(i) =
1
2d

2d∑

m=1

n(im) (A.2)

where im are the first neighbors of the site i. A basic rela-
tion can be derived for the operator [nα(i)]p, with p ≥ 1.
In this and in the following Appendices we shall present
results for the one-dimensional system1. We start from the

1 In Appendices A, B and C, the calculations for the recur-
sion rule, the energy and spectral density matrices are reported

equation

[nα(i)]p =
1
2p

p∑

m=0

(
p
m

)
n(i1)p−mn(i2)m. (A.3)

Because of the algebraic relations (A.1) we obtain

[nα(i)]p =
1
2p

4∑

m=1

b(p)
m Zm (A.4)

where the operators Zm are defined as

Z1 = 2nα(i)
Z2 = 2Dα(i) + n(i1)n(i2)
Z3 = D(i1)n(i2) +D(i2)n(i1)
Z4 = D(i1)D(i2) (A.5)

and the coefficients b(p)
m have the expressions

b
(p)
1 = 1

b
(p)
2 =

p−1∑

m=1

(
p
m

)
= 2(−1 + 2p−1)

b
(p)
3 =

p−1∑

m=1

(
p
m

)
ap−m = 3(1 − 2p + 3p−1)

b
(p)
4 =

p−1∑

m=1

(
p
m

)
ap−mam

= 4(−1 + 3 · 2p−1 − 3p + 4p−1). (A.6)

By solving the system (A.4) with respect to the variables
Zm, we can obtain from (A.4) the recurrence rule

[nα(i)]p =
4∑

m=1

A(p)
m [nα(i)]m (A.7)

where the coefficients A(p)
m are defined as

A
(p)
1 =

1
2p−1

[b(p)
1 − 1

2
b
(p)
2 +

1
3
b
(p)
3 − 1

4
b
(p)
4 ]

A
(p)
2 =

1
2p−1

[b(p)
2 − b

(p)
3 +

11
12
b
(p)
4 ]

A
(p)
3 =

1
2p−1

[
2
3
b
(p)
3 − b

(p)
4 ]

A
(p)
4 =

1
2p−1

1
3
b
(p)
4 . (A.8)

We note that

4∑

m=1

A(p)
m = 1. (A.9)

for the one-dimensional case. Calculations for higher dimen-
sions can be made by using the same technique. For interested
readers, the results for d = 2 and 3 are given in a technical
report [69], available on request.
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Table A.1.

p A
(p)
1 A

(p)
2 A

(p)
3 A

(p)
4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 − 3

2
25
4

− 35
4

5
6 − 15

2
119
4

− 75
2

65
4

7 − 195
8

1505
16

− 1799
16

175
4

8 − 525
8

3985
16

− 1155
4

1701
16

In Table A.1 we give some values of the coefficients
A

(p)
m .

Appendix B: The energies matrices

The energy matrices ε(ξ) and ε(η) can be calculated by
means of the equations of motion (19) and (20) and the
recurrence rule (21). The explicit expressions are

ε(ξ) =




−µ 2dV · · · 0 0
0 −µ · · · 0 0
...

...
...

...
...

0 0 · · · −µ 2dV
0 2dV A(4d+1)

1 · · · 2dV A(4d+1)
4d−1 −µ+ 2dV A(4d+1)

4d





(B.1)

ε(η) =




U−µ 2dV · · · 0 0
0 U−µ · · · 0 0
...

...
...

...
...

0 0 · · · U−µ 2dV
0 2dV A(4d+1)

1 · · · 2dV A(4d+1)
4d−1 U −µ+ 2dV A(4d+1)

4d





(B.2)

where A(4d+1)
m are the coefficients appearing in (19). In

particular, for one dimension

ε(ξ) =





−µ 2V 0 0 0
0 −µ 2V 0 0
0 0 −µ 2V 0
0 0 0 −µ 2V
0 −3V 25V

2 − 35
2 V −µ+ 10V



 (B.3)

ε(η) =





U − µ 2V 0 0 0
0 U − µ 2V 0 0
0 0 U − µ 2V 0
0 0 0 U − µ 2V
0 −3V 25V

2 − 35
2 V U − µ+ 10V



 .

(B.4)

The matrices Ω(ξ) and Ω(η) have the expressions

Ω(ξ) = Ω(η) =





1 24 1 (2/3)4 (1/2)4
0 23 1 (2/3)3 (1/2)3
0 22 1 (2/3)2 (1/2)2
0 2 1 (2/3) (1/2)
0 1 1 1 1



 . (B.5)

Appendix C: The spectral density matrices

By means of the formulas (34) and recalling the expres-
sions [see Appendix B] for the energy matrices, and the
expressions (31, 32) of the normalization matrix, we can
easily calculate the spectral matrices. Furthermore, we
note that the matrices Ω(ξ) and Ω(η) are equal. Then,
the spectral density matrices have similar form in terms
of the matrix elements of the normalization matrices. Be-
cause of the recurrence relation, we need to calculate only
the first row of the matrices. Calculations show that the
matrices σ(a,n) have the following form

σ(a,n) = Σ(a)
n Γ (n) n = 1, 2. · · · , 4d+ 1 (C.1)

where Σ
(a)
n are functions of the elements I

(a)
1,m (m =

1, 2. · · · , 4d+ 1) and Γ (n) are matrices of rank (4d+ 1)×
(4d+ 1). For the one-dimensional case

Σ
(a)
1 =

1
6

(
6I(a)

1,1 − 25I(a)
1,2 + 35I(a)

1,3 − 20I(a)
1,4 + 4I(a)

1,5

)

Σ
(a)
2 =

4
3

(
6I(a)

1,2 − 13I(a)
1,3 + 9I(a)

1,4 − 2I(a)
1,5

)

Σ
(a)
3 = −6I(a)

1,2 + 19I(a)
1,3 − 16I(a)

1,4 + 4I(a)
1,5

Σ
(a)
4 =

4
3

(
2I(a)

1,2 − 7I(a)
1,3 + 7I(a)

1,4 − 2I(a)
1,5

)

Σ
(a)
5 =

1
6

(
−3I(a)

1,2 + 11I(a)
1,3 − 12I(a)

1,4 + 4I(a)
1,5

)
(C.2)

Γ
(1)
1,m = (1 0 0 0 0 )

Γ
(2)
1,m = (1 2−1 2−2 2−3 2−4 )

Γ
(3)
1,m = (1 1 1 1 1 )

Γ
(4)
1,m = (1 (2/3)−1 (2/3)−2 (2/3)−3 (2/3)−4 )

Γ
(5)
1,m = (1 (1/2)−1 (1/2)−2 (1/2)−3 (1/2)−4 ). (C.3)
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